Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR
نویسندگان
چکیده
Mapping aboveground carbon density in tropical forests can support CO2 emission monitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador’s Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg ̈C ̈ha ́1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.
منابع مشابه
Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+
BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...
متن کاملRapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems
Unmanned aerial vehicles (UAVs) can provide new ways to measure forests and supplement expensive or labor-intensive inventory methods. Forest carbon, a key uncertainty in the global carbon cycle and also important for carbon conservation programs, is typically monitored using manned aircraft or extensive forest plot networks to estimate aboveground carbon density (ACD). Manned aircraft are only...
متن کاملHuman and environmental controls over aboveground carbon storage in Madagascar
BACKGROUND Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote m...
متن کاملRapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago
BACKGROUND Spatially explicit forest carbon (C) monitoring aids conservation and climate change mitigation efforts, yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping of aboveground C density (ACD; units = Mg or metric tons C ...
متن کاملTime-series maps of aboveground carbon stocks in the forests of central Sumatra
BACKGROUND Efforts to reduce emissions from deforestation and forest degradation in tropical Asia require accurate high-resolution mapping of forest carbon stocks and predictions of their likely future variation. Here we combine radar and LiDAR with field measurements to create a high-resolution aboveground forest carbon stock (AFCS) map and use spatial modeling to present probable future AFCS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016